Skip to Main Content

Knowledge Syntheses: A How-To Guide

Overview of systematic review steps and resources to assist researchers conducting reviews

Data Extraction Forms

The next step after completing the second stage of screening is for the researchers to read the full text of each article identified for inclusion in the review and extract the pertinent data using a standardized data extraction/coding form. The data extraction form should be as long or as short as necessary and can be coded for computer analysis if desired.

Below you can find some data extaction forms:

Content on this page has been reused with permission from https://guides.library.utoronto.ca/c.php?g=713309&p=5104947

Tips for the Data Extraction Process

The extraction process should be tracked using a standardized data extraction form (see examples above). Data can also be coded for computer analysis. For more information about data extraction, check out this subject guide by the Himmelfarb Health Sciences Library at George Washington University:

Good Data Management Practices

While conducting your systematic review, you will likely need to work with a large amount of data. You will need to extract data from relevant studies in order to examine and compare results. While the data is being extracted, it is very important to employ good data management practices. Proper data management should begin as soon as you start extracting data, and may even dictate which types of data you decide to retain.

The NYU Health Sciences Library has put together a short video about best data management practices - including some great examples of what not to do!

 

The video outlines four data management tips:

  • Retain component variables instead of compound variables whenever possible
  • Clarify all aspects of your team's workflow expectations
  • Develop a naming convention for data to ensure clarity between team members
  • Make frequent backups of your work, housed in different locations

Review Management Software

Review management software tools are specifically tailored to the needs of knowledge synthesis teams. In addition to reference management, some of these tools can also help with data extraction, perform meta-analysis, track team progress, and facilitate communication between members. As indicated below, some of these tools are fee-based. You should also bear in mind that not every tool is appropriate for every kind of synthesis or review - be sure to choose the right fit for your project.